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More Realistic, Flexible, and Expressive Social Crowds using
Transactional Analysis

Abstract Recent algorithms have been able to sim-

ulate “social crowds” that allow agents to interact so-

cially as opposed to only treating other agents as obsta-

cles. Unfortunately, past social crowd algorithms lack

realism and flexibility because they do not allow agents

to move in and out of different and repeated social inter-

actions, are built around a specific obstacle avoidance

algorithm, or are tuned only for a specific social set-

ting and do not allow for artist directed changes. We

propose a new, simplified social crowd algorithm that

focuses on the evolving social needs of agents and al-

lows each agent to join and leave different encounters as

desired. Our algorithm is based on the psychology re-

search area of transactional analysis, does not require

a specific obstacle avoidance algorithm, and allows for

easy artist direction for determining the precise social

environment being simulated. Our algorithm runs in

real-time with 3,000 to 4,000 agents without the re-

strictions of previous research.

Keywords Crowd Simulation · Social Crowd Simula-

tion · Transactional Analysis · Pair Walking

1 Introduction

The film and game industries rely heavily on simulated

crowds to populate special effect scenes and virtual

worlds (see [11] for a game-focused survey). Modern

algorithms produce crowds with infrequent or no colli-

sions, but agents often look stiff and artificial since they

treat other characters as obstacles and don’t stop to

talk or walk together as friends. Scientific observation

has shown that up to 70% of pedestrians show social

interaction as they move [19,15,7].

Recent research has recognized the need for social

interaction in crowds, but most of the proposed solu-

tions are very inflexible: they do not allow for changes

in who is interacting with whom, they require a spe-

cific obstacle avoidance algorithm, or they are designed

for specific scenarios and not for artist directed so-

cial changes. We propose addressing each of these lim-

itations to create a highly realistic and flexible social

crowd simulation algorithm.

Our contributions are:

– A realistic social crowd algorithm with agents that

move in and out of conversations with different agents

and have repeated interactions with the same agent.

This is more expressive than many previous algo-

rithms that keep agents in fixed groups or do not

allow multiple interactions. We base our implemen-

tation on the transactional analysis area of psychol-

ogy which studies these types of interactions.

– A flexible framework for social crowds that works

with any obstacle avoidance algorithm and allows

agents to stop and talk and pair walk.

– An expressive method for making the social nature

of our crowds artist directed. Using our method it is

easy to change the environment to have the differ-

ent feel of a work place, a school campus, a public

park, etc. This art direction can change the envi-

ronment in real-time to create a panic situation or

to reflect changing socializing, such as when a class

break ends.

We validate the realistic, flexible, and expressive na-

ture of our work by demonstrating the existence of key

features, including agents interacting with an multiple

agents using transactional analysis, a framework that

does not require a specific obstacle avoidance algorithm,

and artist directed socializing. Our approach runs in

real-time even with crowds of 3 to 4 thousand agents.
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Fig. 1 Examples of the different scenarios available in our social crowds algorithm including, from left to right, agents talking
on a path in a park, a bi-modal distribution of agents at a party (see Section 7.3), a 15-story building, and a globe. The
resulting crowds have agents that that stop to talk and pair walk and have believable global effects.

2 Previous Work

Crowd simulation has long looked to psychology and

sociology to understand current research about human

behavior and group dynamics. Durupinar et al. [9,8] use

the OCEAN personality method [10] to create variation

in their crowds. These variations include how the agents

move (like speed) and how they interact with obstacles

(like a preference to move to the right). Pelechano et

al. [26] use a presence measure to judge the realism of

their crowds. We join this research approach by looking

to current psychological and sociological understanding

when formulating algorithms for realistic crowd simula-

tion. Unlike previous work, we draw on the psychologi-

cal field of transactional analysis (see Section 3), which

specifically looks at how people interact over multiple

social encounters.

Looking directly at social crowds, Musse and Thal-

mann [20] present a sociological-based algorithm for

agents changing groups while traveling between fixed

goals. They give results for a museum scenario where

such fixed goals would be expected. Yeh et al. [32] use

proxy agents to model the inter-personal influence of

authority and protection. This is achieved by the cre-

ation of proxy agents, or spaces that are considered oc-

cupied by the crowd simulation engine but which are

not rendered to the screen. Pedica et al. [25,24] pro-

posed an algorithm for agents talking in groups based

on human territoriality theory. Carstendottir et al. [6]

focus on where agents in a crowd will choose to sit in a

cafe or restaurant.

Traum et al. have done extensive work on dialog for

immobile agents. Early research [22,23] forced agents to

be in constant conversation and all in the same conver-

sation. Later work allows people to join and leave con-

versations [16] followed by work which allowed agents

to move to engage a different person [17]. This work

creates believable dialogs but is not designed for large

crowds with agents moving more than small distances.

Popelová et al. [27] present research focused purely

on two people meeting and then walking together to

a destination. The agents involved wait for each other

when needed and walk abreast by using a social forces-

style approach. They show empirically that this type

of grouping is more believable than the simple leader-

follower social setup proposed by Reynolds [28]. Kara-

mouzas and Overmars [18] look at how small groups

(2-3 members) change their formation as they weave

around other groups and obstacles. Their work is pri-

marily based on the work of Moussäıd et al. [19] who

took an empirical look at groups in crowds filmed in

public places. Moussäıd et al.’s work verifies the preva-

lence of social interaction within crowds.

Previous work in socializing and group formation

in crowds is diverse and successful; however, it lacks

several key aspects for the creation of realistic social

crowds. First, in real situations, such as those at work,

school, or a public park, people constantly move in and

out of social encounters. Many recent papers designed

for large crowds are not flexible enough to handle both

large crowds and fluid changes in social interactions.

Second, most papers enforce a specific obstacle avoid-

ance method, forcing users to the specific advantages

and disadvantages of their choice. Third, each social

scenario has its own set of specific social interactions.

People interact differently at work, the bus stop, on a

date, or in a panic situation. Almost all previous work

has been tuned to handle a specific social situation as

opposed to letting the user choose the social feel. This

means that if a user wants a different social scenario, a

different algorithm must be implemented.

In order to respond to these issues, we present a new

algorithm which increases the realism, flexibility, and

expressiveness of social crowds. Our approach is real-

istic since it allows for constant pairing and unpairing

and uses transaction analysis to determine how these

interactions evolve over time. Our approach is flexible

since it does not require a specific obstacle avoidance

algorithm in order to run and allows agents to both stop

to talk and pair walk. Lastly, our approach is more ex-

pressive in the types of environments it can simulate

and allows for easy, artist directed tuning to produce a

desired social environment.
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3 Theory of Improved Social Crowds

One way to differentiate between traditional, non-social

crowd algorithms and social crowd algorithms is by

looking at the type of reward function the algorithm

tries to maximize. Traditional research often presents

algorithms for crowds that maximizes a reward function

that gives rewards for reaching destinations quickly and

avoiding obstacles. Variations to this theme include ad-

ditional rewards based on agent effort or acceleration

(consider [12] and [31]).

On the other hand, the reward function for a social

crowd algorithm also includes a reward for social inter-

actions. The movement required for social interactions

and the movement required to head towards a destina-

tion are often different. Thus, in order to optimize a

social reward function, agents must identify when and

for how long socializing is more rewarding than heading

straight for the destination. One type of common social

reward function is as follows:

SocialReward : a, b, Rel(a, b) → reward (1)

where a and b are the agents in question and Rel is a

function that determines the relationship between the

agents (are they friends, married, office mates, enemies,

etc.). Some papers can be thought of as having a so-

cial reward function that returns a binary value to the

Rel function. This results in agents who are really good

friends with only a specific small set of agents and who

have no relationship to the remaining agents. For exam-

ple, agents in Popelová et. al’s work [27] and Karamou-

zas and Overmars’s work [18] only have relationships

with a specific small set of other agents. In this case

SocialReward could be implement as follows:

SocialReward(a, b) =

{
High if Rel(a, b)

0 otherwise
(2)

This type of reward function results in agents that

socialize only with a specific set of people and that never

change friends. While this can create believable results

for settings where people are on dates or tourists who

do not know anyone else in the country, it fails to cre-

ate the realism of common social situations. As studied

scientifically by James and Coleman [15,7], in most

cases people move in and out of different social interac-

tions and social grouping frequently. Examples of this

include office workers who stop multiple times to talk

with different people as they go down a hall, students

who walk together with different groups of friends as

they go to class, or friends at a park who stop and talk

to different people.

Allowing this type of social interaction in a crowd

simulation significantly contributes to its realism but

adds several new complications. Since friends are no

longer rigid and exclusive groups, we need a way of

choosing a new reward function that changes over time

and accounts for the various relationships between peo-

ple. Additionally, it means that agents need to walk

together, to join and part easily, and to stop to talk if

they are heading in different directions.

In this section we address the theory that allows

us to address these issues. We first discuss the area of

transactional analysis which gives formal guidance on

how to create a more realistic reward function. We then

cover our flexible architecture for moving agents into

stopping to talk interactions and pair walking interac-

tions.

3.1 Transactional Analysis

We propose that far more realistic crowds will be gener-

ated by an implementation of SocialReward (see Equa-

tion 1) that gives a reward based on psychological and

sociological research into interpersonal social interac-

tions. In order to design a more flexible SocialReward

in this way, we turned to the psychological area of trans-

actional analysis.

Introduced by Eric Berne in the late 1950s [2], the

area of transactional analysis has grown to include its

own association and scholarly journal: The International

Transactional Analysis Association and Transactional

Analysis Journal. Transactional analysis has also pro-

duced a large range of scholarly and popular psychology

books (including [4,3,5,13]). Among other psychologi-

cal issues, transactional analysis studies what the ex-

pected length of a spontaneous social activity “ritual”

will be. The length of the conversation is determined

by the number of social “strokes” that are expected be-

tween a pair of talkers based on their relationship and

past history. In the context of transactional analysis, a

social stroke occurs when one party gives social atten-

tion to another party as they interact.

The transactional analysis literature (see specifically

[4]) gives two main variables that affect the expected

number of strokes in a conversation: the relationship of

the agents and the history of recent interactions. For

example, agents that have known each other for a long

time would feel highly rewarded by a long conversation,

while such a lengthy conversation may not be culturally

appropriate for people who are not as well acquainted.

Additionally, according to transactional analysis, the

number of strokes, or the length of the conversation,

is related to past interactions. If two people have not

seen each other for a long time, regardless of how strong

their relationship is, then the number of strokes would

be expected to increase. For example, the short greeting

between coworkers who last talked a day ago would be
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Fig. 2 The expected conversation times based on the two
variables we derive from transaction analysis: friendship and
conversation interest. Agents with high interest that are
friends will have a long conversation. Those with lower inter-
est (because they have talked recently) or a lesser friendship
will have shorter conversations.

expected to be longer than if they had seen each other

in the hall five minutes before. In our work we think

about this past history as an “interest in conversation

level” between two agents that rises and falls depending

on whether or not they are interacting.

Using transactional analysis principles, a more re-

alistic social reward function than that in Equation 1

would depend both on relationship and past interac-

tions as follows:

SRewardta : a, b, Rel(a, b), Past(a, b) → reward (3)

Where Past(a, b) gives the interest in conversation level

for a given set of agents. Using Rel and Past, we can de-

termine the length of a conversation between two agents

based on their friendship level and conversation inter-

est, as shown in Figure 2. We detail our implementation

of transactional analysis-based social crowds in Section

4.

3.2 Flexible Architecture

Previous research has pointed out that when agents

socialize there is a mutually understood center of the

conversation, called the formation nucleus (see Scheflen

and Ashcraft [30] and Pedica and Vilhjálmsson [25]).

When agents socialize they usually are within a small

radius of this formation nucleus. Social crowd algo-

rithms move agents toward this formation nucleus so

they can interact. Note that this formation nucleus may

not be stationary if the agents are walking as a group.

Once we have identified which social interactions

are rewarding, we need to move agents toward these

social nuclei. We focus on two main social interactions

where there is a social nucleus: stopping to talk and pair

walking. In stopping to talk, agents with divergent des-

tinations stop to chat before moving on. In pair walking

agents talk as they move toward destinations with sim-

ilar headings. Both of these have been implemented in

Fig. 3 Abstraction of previous social crowds architecture
(top) as compared to our proposed architecture (bottom).
Notice that our approach does not enforce a specific obstacle
avoidance algorithm.

previous work, but we have not seen them combined in

the same flexible framework.

More importantly than combining stopping to talk

and pair walking, we propose a more flexible architec-

ture for moving agents in social situations. Previous

work has moved agents so they can interact by manu-

ally altering a specific obstacle avoidance algorithm (for

example, social forces [27] or a velocity approach[18]).

Since each obstacle avoidance algorithm has its respec-

tive advantages and disadvantages, users of these pre-

vious crowd algorithms are not at liberty to choose the

obstacle avoidance algorithm that fits their needs. Fig-

ure 3 shows the abstraction of previous approaches that

wrap their implementation around a specific algorithm

(top) as compared to our approach, which leaves the

decision about the obstacle avoidance algorithm to the

user (bottom).

To allow this flexibility, we propose an algorithm

which temporarily changes an agent’s waypoint. We ex-

plain how we use this to create two common effects,

stopping to talk and pair walking, in the next section.

We discuss the specifics of how we implement this ar-

chitecture in Section 5.

4 Implementation: Transactional Analysis

As discussed in Section 3.1, transactional analysis presents

a scientific method of determining the appropriate length

of a rewarding conversation between two agents. Specif-

ically, the length can be determined using two primary

factors: the friendship of the agents and their past his-

tory of interaction. Using these transactional analysis

principles as a base, we assign a social state to each

agent that changes as time progresses. An agent’s so-

cial state is composed of two parts, a friendship variable

and an interest in conversation variable for each other

agent with whom it has interacted recently.
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Fig. 4 Example of how an agent’s (a) conversation inter-
est with another agent (b) changes over time. The black line
represents the interest level of a in socializing with b. Areas
highlighted blue are times when agent a and b can see each
other. Areas highlighted in green are when a and b are talk-
ing. The top part of the graph highlighted in white is where
a’s interest in talking is rewarding enough to make it worth
socializing. The bottom part highlighted in gray represents
interest levels that are too low for a to find it worthwhile
to talk. Notice as a and b meet frequently, the interest level
(and corresponding social reward) drops, so the conversation
length shortens and eventually they stop talking. Later when
they meet again, the interest level has returned. See Equation
4 and Figure 6.

In real life, friendships have the property of be-

ing reflexive and intransitive. Since relationships are

built through mutual interaction, the accumulative re-

lationship for a pair of agents should be the same, i.e.

∀a, b ∈ A : Rel(a, b) = Rel(b, a) where A is the set

of all agents. Furthermore, if a and b have a relation-

ship, and b and c have a relationship, then a and c

do not necessarily have a relationship, i.e. ∀a, b, c ∈
ARel(a, b)∧Rel(b, c)¬ ⇒ Rel(a, c). However, the prob-

ability of Rel(a, c) being higher should grow if we know

a and b are friends and b and c are friends.

In our implementation, each agent’s friendship is de-

fined by an angle in [0, 2π]. The relationship between

two agents, Rel(a, b) in Equation 3, is determined by

the angle distance between their friendship angles. If

the angle distance is low, the friendship between the

agents is higher. If the angle distance is high, the friend-

ship between the agents is lower or nonexistent. We

leave it as an artist directed option how large the angle

distance can be for agents to still be friends. It fol-

lows that this approach has the desired characteristics

of reflexivity and intransitivity, with the advantage that

friends of friends are more likely to be friends than not.

The friendship angle of each agent is the first half

of its social state. The second half is a list of interest

values for each other agent. The more recently agents

have interacted, the lower their mutual interest level

will be. As time passes this interest will increase lead-

ing to longer conversations when they meet again (see

Figure 4). Formally, we write the interest of agent a

towards agent b as Iab. If Near is a function that de-

termines if agents are close enough to notice each other

and S is a function that returns true if agents are so-

cializing, we can define the change in interest from time

k to k + 1 as follows:

Iab,k+1 =

⎧⎪⎪⎨
⎪⎪⎩

Iab,k + .01 if ¬Near(a, b)

Iab,k − .01 if Near(a, b) ∧ ¬S(a, b, k + 1)

Iab,k − .03 if S(a, b, k + 1)

Iab,k − .5 if S(a, b, k) ∧ ¬S(a, b, k + 1)

(4)

In other words, the interest level increases when

agents are not near each other, socializing agents lose

interest as they talk, and when they stop talking the

interest drops dramatically. This creates the effects ex-

pected in transactional analysis which say that people

are less likely to socialize when they have just done so.

Notice that the second line of Equation 4 has agents

lose a little interest when they are next to each other

but not socializing. This accounts for the non-verbal

communication that occurs when people are near each

other and not talking directly. Without this slight de-

crease in interest, agents can get into a social jam where

a and b talk while c and d talk until both sets lose inter-

est and then a and c talk while b and d talk until they

all lose interest again only to return to the initial social

setup. In this case, no one moves and the behavior is

unrealistic.

When agents first interact, the social interest value

is at its maximum of 1. Since the list of an agent’s in-

terest relative to every other agent can grow to be n2,

we instead store interest as a sparse list. If an agent

has an interest of 1 toward another agent, then we do

not store that interest level in the list. Thus, if agent a

comes near agent b and a does not have a stored interest

value for b, a adds a new interest level and assigns it a

value of 1. After a and b socialize and the interest level

returns to 1, the entry for b is removed. As we discuss in

our results section, Section 7, using transactional anal-

ysis in this way creates believable crowds where agents

socialize with many different agents and can interact

with the same agent multiple times.

Using these friendship and interest variables we can

formally define the reward two agents have in talk-

ing to each other. Formally, the reward for socializing,

SReward, for agents a and b is:

SReward(a, b) = Rel(a, b) ·min(Iab, Iba) ·GlobalI (5)

where I is the interest of one agent to talk to another

agent based on previous interactions (see Equation 4).

The two interest levels should be the same, but we take

the minimum in case they are not. We are interested

in future work where some agents may regain interest

slower than others, in which case this function will still

be viable. Notice also the presence of variable GlobalI,

which is the global interest parameter that can increase

or decrease every agents’ interest in talking. This allows

our simulation to be artist directed (see Section 6). If
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the interest level returned by SReward ever drops be-

low .5, then the agents consider heading to their desti-

nations more rewarding than talking, and the conver-

sation ends.

5 Implementation: Flexible Architecture

As noted in our section on the theory of more flexible

social crowds, Section 3.2, one of our key contributions

is that our algorithm directs agents to the formation

nucleus without requiring a specific obstacle avoidance

function. To do this, our social algorithm directs agents

by giving them temporary waypoints instead of altering

any of the obstacle avoidance code. Once the interac-

tion ceases to be rewarding, our algorithm returns the

waypoint to its original location, and the agent contin-

ues on its way. During the entire algorithm the obstacle

avoidance function never knows that our agents are so-

cializing.

We can simulate two main types of social interac-

tions: stopping to talk and pair walking. Stopping to

talk occurs when two friends meet but their destina-

tions lie in significantly different directions. Thus, the

most rewarding experience is to stop and talk instead

of going way off course from a destination. Pair walk-

ing occurs when two agents have destinations in roughly

the same direction. In this case the agents walk together

until their destinations diverge.

5.1 Stopping to Talk

Our goal with stopping to talk is to move agents using

only changes in their waypoint into the formation nu-

cleus where they can have a rewarding conversation. If

two agents, a and b, can see each other and a conver-

sation will be rewarding, our engine creates temporary

waypoints for a and b. If initially the agents are not

within the range of a formation nucleus (about 1.5m in

our work), then the temporary waypoint is in the di-

rection of the other agent. This leads the agent towards

each other. Once they are close to the nucleus, our al-

gorithm changes the temporary waypoint to the agent’s

current location pointing in the direction of the other

agent. This makes the agent stop and look in the di-

rection of the other agent. Once the social reward from

talking (see Equation 5) drops too low, the conversa-

tion ceases to be rewarding, the temporary waypoint is

removed, and the agent returns to its course.

Formally, if Stopped is the function that gives the

waypoint for agent a who is going to stop to talk with

b, then we have:

Stopped(a, b) =

{
a+ ||b− a|| if |a− b| > 1.5m

a otherwise

5.2 Pair Walking

When agents are heading in the same direction, their

formation nucleus moves with them. As mentioned ear-

lier, previous work creates this behavior but usually as-

sumes permanent relationships (i.e. certain agents are

always walking together), which is less realistic and sim-

pler to implement. Thus, our approach is flexible in the

obstacle avoidance algorithm used and expressive in al-

lowing more types of social interactions than previous

work.

Once agents have recognized that they will be re-

warded by socializing and that they have waypoints in

the same direction, the pair needs a mutual destination.

Instead of heading to the average of the waypoints, we

chose one agent whose path both agents will use as

a guide until the angle to the other agent’s destina-

tion grows too high. We choose this dominant agent by

picking the agent whose internal ID is lower. In the fu-

ture we are interested in more psychologically-based ap-

proaches for choosing dominance. Using this approach

agents hardly if ever end up in a stuck position when

pair walking, something that could happen frequently

if a simple average of waypoints was used.

Additionally, we move agents in pairs using only

waypoints. Our algorithm must deal with two differ-

ent situations when agents walk together: times when

the agents are close together (within the formation nu-

cleus) and times when an obstacle has split the agents

(and they are not close together). In the former case,

the agents move together towards their mutual goal. In

the latter, the agent that is further ahead waits for the

return of the one behind. As noted by Popelová et al.

[27], stopping and waiting generally looks more real-

istic than heading backwards to reunite. Additionally,

we have found that it looks unnatural for an agent that

gets ahead to start and stop suddenly as the lagging

agent’s distance falls in and then out of the formation

nucleus. Instead we throttle the speed of the agent in

front based on angle from the agent ahead to the agent

behind. If the dot product of the vector to the agent’s

waypoint and the friend agent is above 0, the agent

will walk at full speed. If not, the agent will slow down

proportional to the dot product (see Figure 5). Agents

using this method speed and slow down naturally when

a friend is gets waylaid as shown in our results, specif-

ically Figure 7.
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Fig. 5 Pair walking improvements for more realistic pairing.
On the left we show how a pair walking agent slows down to
let a friend catch up. The cosine of the angle to the other agent
is used to choose a speed (green represents full speed, red
represents slowing down.) On the right we show how the less
dominant agent (orange, hollow agent) finds a waypoint based
on the heading of the dominant agent (blue, filled agent). The
less dominant agent finds a waypoint a shoulder’s width away
from the blue agents direction to destination.

We have also found that if agents walking together

share the exact some waypoint, there can be oscilla-

tions as they get closer to the destination. This comes

because as they approach their destination, they get

pulled together and then repelled by the obstacle avoid-

ance algorithm to prevent a collision with themselves.

To resolve this, we assign the less dominant agent a tem-

porary waypoint that is a shoulder’s width way from the

direction the dominant agent is heading. We do this by

finding the line from the dominant agent to the dom-

inant agent’s waypoint. We then geometrically deter-

mine which side of that line the other agent is on. We

assign the other agent’s temporary waypoint to be off-

set from the dominant direction in that direction (see

Figure 5 on the right). As we discuss in our results sec-

tion, this method proves very flexible since it prevents

oscillations even if the dominant agent switches from

the left to right (or vice versa) of the other agent.

6 Implementation: Art Directed Socializing

Many of the papers noted in our previous work section,

Section 2, focus on particular social situations. For ex-

ample, Musse and Thalmann [20] model agents in a

museum-like environment, Popelová et al. [27] focus on

situations where people are paired off on dates, and

Karamouzas and Overmars [18] look at small groups

with an emphasis on shoppers at a mall. Each one of

these algorithms is successful in its goals, but none of

them is able to handle a large range of different social

environments.

We assert that these varied social interactions do

not require their own special algorithm but that with

the right parameters a simulation can easily be altered

to represent almost any social environment. This en-

vironment expressiveness is critical for applications of

our algorithm in film, games, and planning where an

artist wants to produce a specific social feeling. In or-

Table 1 Table of scenarios that can easily be generated using
our two-variable approach to social crowds. Notice we can
create simple scenarios where the distribution of variables are
consistent, bi-modal scenarios where the distribution is split
between two distinct groups, and changing scenarios where
the user can change the social environment in real-time.

der to facilitate this, we have made our social crowds

algorithm artist directed using only a few parameters.

In adding this expressiveness, to our algorithm we

rely on transactional analysis and the variables which

define an agent’s friends and interest in socializing. As

shown in Table 1, a large array of social environments

can be created by changing the distribution of friends

and interest levels. For example, an office or workplace

environment can be reproduced by giving each agent

a large group of friends but a lower interest level in

talking. The resulting agents will be very likely to stop

to talk, but only briefly on their way to their meetings

or offices. To allow for artist directed content, we have

buttons which allow the user to easily move the dis-
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Fig. 6 Four images showing four encounters between two agents (one in green and one in purple). In the first encounter they
have a lengthy conversation (conversation length is indicated by the number of word bubbles above each agent). The second
image shows the next encounter where they have a shorter conversation (notice that the green and purple agents have switched
positions). The next image shows a later encounter where they do not have a conversation, reflecting the reduced reward
from socializing due to their previous encounters. The last image shows a much later time when their interest in socializing
has returned and they engage in a longer conversation. Figure 4 shows the change in interest level graphically from a similar
scenario.

tribution of friends and interest from high to low (see

Equation 3).

Our algorithm can be used to create three differ-

ent categories of social environments: simple, bi-modal,

and real-time changing. Simple distributions give the

same distribution of friend and interest values to all the

agents and they do not change with time. The result-

ing environments include offices or workplaces, school

campuses, or parks. We also allow for bi-modal distri-

butions where there are two types of agents. For exam-

ple, agents attending a party will have a high interest

in talking to other party goers while the waiter agents

have a much lower interest as they focus on their job.

Lastly, we allow for real-time changes in the interest

levels as time passes to reflect changes in the environ-

ment. We do this simply by giving the user control over

the global interest level. For example, we have a panic

button which immediately drops the global interest to

0 (see Figure 8). We can also reproduce smaller changes

in the environment, like students who talk until just be-

fore class break ends or the fluctuations in socializing

at work based on the time of day.

Combined, this straightforward ability to create sim-

ple, bi-modal, and real-time changing social environ-

ments makes our algorithm expressive in the set of so-

cial environments it can simulate.

7 Results

Our contributions are three fold: a more realistic so-

cial crowd algorithm that allows agents to interact with

multiple agents over time using transactional analysis, a

more flexible implementation that allows for almost any

obstacle avoidance algorithm, and a more expressive,

artist directed way of creating many different social en-

vironments. In order to determine if our algorithm in-

deed achieved these goals, we ran our algorithm with

large crowds in a variety of different situations (see Fig-

ure 1) including 2D surfaces and 3D surfaces using an

algorithm similar to that of Ricks and Egbert [29]. We

discuss the results of each of these areas and then give

the performance for the system in general.

7.1 Transactional Analysis Results

We verified our social crowd algorithm by looking for

agents who move naturally in and out of conversations

and who have multiple social interactions with the same

agent using transactional analysis principles. In each of

our scenarios our algorithm naturally moved agents in

and out of multiple conversations, with each having a

duration proportional to the social reward of the inter-

action.

An example of our transactional analysis-based prin-

ciples is shown in Figure 6. On the left are three images

showing successive encounters of two agents. With each

encounter the interest level drops and the conversation

length shortens (conversation length is noted by the

number of words appearing above each agent’s head).

On the right is a later image showing a longer conver-

sation since the interest has grown with the passing of

time. Notice that this simple example follows the prin-

ciples outlined in our theory and implementation sec-

tions about transactional analysis (see Sections 3.1 and

4, respectively).

7.2 Flexible Implementation Results

Our contribution of flexibility in the underlying obsta-

cle avoidance algorithm (see Sections 3.2 and 5) is the

most straightforward to validate. We ran our simula-

tion using three different obstacle avoidance algorithms,

each of which is distinctly different in its implementa-

tion. Specifically, we used social forces based on Helbing

and Molnar [14], reciprocal velocity obstacles based on

van Den Berg et al. [1], and an anticipation model based

on the work of Ondřej et al. [21]. Our crowds were able

to move smoothly and exhibited the same key features

with each underlying obstacle avoidance algorithm. We
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believe that other obstacle avoidance algorithms would

produce equally valid results with our approach.

A clear example of our stopping to talk algorithm

is shown in Figure 6 where two agents stop three times

to hold a conversation. Our pair walking approach is

shown in Figure 7. Notice in Figure 1 that our results

have the global dynamics we expect from social crowds,

including clear clumping patterns as agents socialize.

7.3 Generating Different Social Situations

We can alter our distribution of relationships and con-

versation interest to model a huge range of social en-

vironments or real-time changes in the social environ-

ment. Figure 1 gives an example of several different

social environments created using the artist directed

features of our algorithm.

For a more specific example, consider Figure 8 which

shows how we can alter the nature of the social envi-

ronment in real-time. This figure shows agents in an of-

fice talking and the changes that happen when the fire

alarm goes off. We simulate this by reducing the global

interest to 0, which stops the conversations, and giv-

ing each agent a destination at the nearest exit. Later

the alarm stops, and we get the agents talking again by

raising the global interest level back to 1.

7.4 Performance

We ran our social crowds algorithm doing performance

analysis as shown it Table 2. Notice that even with

thousands of agents, our algorithm still runs at real-

time speeds. All tests were done on an Intel i-7 2600

chip at 3.4Ghz with our program consuming only 10-15

percent of the CPU time. We believe improved paral-

lelization could increase the CPU usage to 100 percent

and our results would run even faster. Profiling our pro-

gram showed that our additional social algorithm used

only 2.28% of the computation time for our run with

1000 agents. Notice that our flexible architecture makes

this value very easy to compute since our algorithm is

modular. We believe both of these results verify our ap-

proach as creating a method for realistic results while

consuming minimal computational resources.

Table 2 Performance results without render time. The social
crowd part of our implementation consumed 2.28% of the
computation time of our program.

Fig. 7 Two agents pair walking through a crowd using our
flexible method for pair walking. The agents wait for each
other (left), walk together (middle two images), and part
when their destinations diverge (right).

Fig. 8 Example of the artist directed nature of our algo-
rithm. We simulate a fire alarm in an office hall by dropping
the global interest to 0 (top image) and giving everyone a
destination at the nearest exit. The conversations end (sec-
ond image) and the agents move to the exits. We change the
global interest value to 1 to give the all clear (bottom two
images), and the employees return to socializing.
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8 Future Work and Conclusion

In terms of future work, our algorithm is limited by

group size since we currently can only generate groups

of up to two people. Sociological work consistently has

found that the equilibrium nature of crowds tends to-

ward smaller groups of two or one, with less than 12% of

observations showing groups of size three or more (see

James [15] and Coleman [7]), Further, in larger groups

people tend to break into smaller subgroups [7]. We be-

lieve this means our current results are still relevant and

generally applicable, but we are still looking at ways of

generalizing our work to larger groups.

We have presented our algorithm that addresses three

consistent issues with previous crowd simulation work:

unnatural socializing, inflexible implementations, and

limited social environments. To address these, our al-

gorithm uses the area of transactional analysis to create

believable socializing between agents. Additionally, our

simulation is built on a very flexible architecture that

allows for almost any obstacle avoidance algorithm. Lastly,

we allow for easy, real-time artist direction, allowing the

user to choose the desired social environment and even

change this mid-simulation.
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